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Abstract Some antioxidant anesthetics directly inhibit

lipid peroxidation mediated via the generation of reactive

oxygen species (ROS). To date, the scavenging effects of

midazolam on ROS have not been directly assessed. We

investigated the inhibitory effect of midazolam on ROS

[hydroxyl radical (HO�) and superoxide (O2
�–)] by in vitro

X-band electron spin resonance with the spin-trapping

agent 5,5-dimethyl-1-pyrroline-N-oxide. Our results indi-

cated that HO� and O2
�– were not affected by midazolam at

clinically relevant concentrations, but were directly scav-

enged by midazolam at high concentrations (i.e., [4.6 and

[1.5 mM, respectively).
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Various reports have shown that oxidative stress induced

by reactive oxygen species (ROS) such as the hydroxyl

radical (HO�) and superoxide (O2
�–) can contribute to the

pathophysiology of brain diseases, including ischemia–

reperfusion injury [1], tumor [2], aging [3], and various

neurodegenerative disorders [4]. The protective effects

of general anesthetics against oxidative stress are well

known [5–7]. Antioxidant anesthetics, particularly propofol

(2,6-diisopropylphenol), have been shown to inhibit ROS-

mediated lipid peroxidation [5, 6, 8]. In a previous study

using electron spin resonance (ESR), we demonstrated that

propofol with a carrier emulsion consisting of medium-

chain triglycerides (MCT) and long-chain triglycerides

(LCT) acted as a scavenger of HO� in the brains of stroke-

prone spontaneously hypertensive rats (SHRSPs) [9].

Midazolam and propofol are commonly used as seda-

tives for critically ill patients [10]. Such patients usually

suffer from the pathologic effects of oxidative stress,

defined as an imbalance between the generation of ROS

and inactivation by antioxidant defense systems. Therefore,

the antioxidant activities of propofol and midazolam may

be of clinical importance. Propofol pretreatment greatly

attenuated the impairment in comparison with midazolam,

which agrees with the concept of antioxidant activity in the

presence of membranes [10]. Propofol has previously been

shown to have a greater antioxidant effect than midazolam

against peroxyl radicals generated in the presence of

erythrocyte membranes [10]. However, to date, the direct

scavenging effects of midazolam on ROS have not been

examined, for example by using a direct detection method

such as ESR.

Our laboratories have been developing in vitro bio-

medical applications for the ESR detection of ROS such as

O2
�– [11], H2O2 [12], 1O2 [13], and HO� [14]. We have

successfully applied this method to assess the antioxidant
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properties of drugs in biological systems [9]. In the present

study, we used the same technique to investigate the anti-

oxidant effects of midazolam. We found that midazolam

scavenged ROS at high concentrations, but that the anti-

oxidant effect of midazolam was less potent than that of

propofol.

Midazolam was purchased from Astellas Pharma Inc.

(Tokyo, Japan). Xanthine oxidase [XO; (grade III: from

bovine milk, chromatographically-purified suspension in

2.3 M (NH4)2SO4–10 mM sodium phosphate buffer, pH 7.8,

containing 1 mM EDTA and 1 mM sodium salicylate)],

xanthine, and superoxide dismutase were obtained from

Sigma (St. Louis, MO, USA). Hydrogen peroxide (H2O2)

and FeSO4 were obtained from Wako Chemical (Osaka,

Japan). 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was

purchased from Labotec (Tokyo, Japan).

HO� was generated by the Fenton reaction (H2O2 plus

FeSO4) and by ultraviolet (UV) irradiation of H2O2, as

described previously [9]. O2
�– was generated from xanthine–

XO by methods also described previously [9]. All solutions

were prepared in 0.1 M phosphate-buffered saline (pH 7.2).

ESR spin-trapping was conducted with an ROS generating

system containing DMPO. ESR observations were per-

formed with a JES-RE 1X X-band spectrometer (JEOL,

Tokyo, Japan) connected to a WIN-RAD ESR Data Ana-

lyzer (Radical Research, Tokyo, Japan) at the following

instrument settings: microwave power 8.00 mW, magnetic

field 335.0 ± 5 mT, field modulation width 0.079 mT,

receiver gain 400–500, sweep time 1 min, and time con-

stant 0.03 s. To quantify the spin adducts detected, we

obtained ESR spectra for manganese oxide standards. After

the ESR spectra had been recorded, the signal intensity

(expressed as relative height) was normalized against the

signal intensity of the manganese oxide standard marker [9].

All experiments were repeated a minimum of three times.

The scavenging effect was considered to correspond to the

signal intensity (percent of control), as described previ-

ously [15, 16].

Statistical analyses were performed using Ekuseru-Tou-

kei 2008 (Social Survey Research Information Co., Ltd.,

Tokyo, Japan). Results are presented as the mean ± SD.

The Dunnett test was used for multiple comparisons.

A p value of less than 0.05 was considered to be statistically

significant.

In the present study, we used ESR spin-trapping with

DMPO to assess the effect of midazolam on HO� generated

by the Fenton reaction. As reported previously [9], fol-

lowing the addition of H2O2 to FeSO4 a characteristic

DMPO–OH spin adduct with hyperfine splitting giving rise

to four resolved peaks was observed (Fig. 1a; control).

Midazolam at high concentrations (7.7–10 mM) reduced

the DMPO–OH signal in a dose-dependent manner (Fig. 1).

In the next study, ESR spin-trapping with DMPO was

used to assess the effect of midazolam on HO� generated by
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Fig. 1 Scavenging effects of midazolam on hydroxyl radicals (HO�)
generated from the Fenton reaction. a Electron spin resonance (ESR)

spin-trapping measurement of HO� generated from H2O2 (20 lM) and

FeSO4 (20 lM) in 0.1 M phosphate-buffered saline (pH 7.2) with the

spin trap 5,5-dimethyl-1-pyrroline-N-oxide (50 mM) in the absence of

midazolam (control) and with midazolam pretreatment at 6.1, 7.7, 9.2,

and 10.0 mM. Signals appearing on either side of the ESR spectrum

correspond to manganese oxide (MnO), used as a reference. b Dose–

response showing the scavenging effect of midazolam (closed column
6.1–10.0 mM) on HO� generated from the Fenton reaction. The signal

intensity of the second peak of the spectrum was normalized to the

signal intensity of the MnO standard. Data represent mean ± SD of

three identical experiments. Values annotated with asterisks were

significantly different (p \ 0.05) from the corresponding control value
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UV irradiation of H2O2. Consistent with previous studies

[14, 17, 18], a characteristic DMPO–OH spin adduct

spectrum with hyperfine splitting giving rise to four

resolved peaks (Fig. 2a; control) was observed following the

UV irradiation of H2O2. The DMPO–OH spin adduct was

significantly reduced at high concentrations ([4.6 mM)

(Fig. 2a). Pretreatment with midazolam (4.6–10.0 mM)

reduced the DMPO–OH signal in a dose-dependent manner

(Fig. 2b). These data suggest that high concentrations of

midazolam directly scavenged HO� by a mechanism that did

not involve iron chelation (Fig. 1).

We also investigated the scavenging effects of midaz-

olam on O2
�–, as measured by ESR spin-trapping with

DMPO, in the presence of midazolam. As reported previ-

ously [9, 18], after the addition of xanthine to XO, a

characteristic DMPO–OOH spin adduct with hyperfine

splitting giving rise to 12 resolved peaks was observed

(Fig. 3a; control). The addition of high concentrations of

midazolam (1.5–6.1 mM) to the xanthine–XO system led

to a concentration-dependent decrease in the intensity of

the DMPO–OOH signal (Fig. 3).

When given intravenously for sedation, midazolam has

been shown to decrease ROS production under conditions

of surgical stress [19]. The potential neuroprotective effect

of intravenous anesthetics such as propofol may be medi-

ated by their antioxidant properties, which have been

shown to inhibit apoptosis, ischemia–reperfusion injury,

and inflammatory-induced neuronal damage [20, 21].

Several prior studies have suggested that midazolam does

not have antioxidant effects, based on its inability to inhibit

lipid peroxidation [22, 23]. Previous studies have shown

that midazolam can inhibit lipid peroxidation in vitro [24];

however, it was not clear whether this was due to a direct

scavenging effect on ROS. We therefore undertook the

present ESR study to directly assess the effect of midazolam

on HO� and O2
�–. Our results provide direct evidence that

high concentrations of midazolam scavenge HO� as well as

O2
�– generated from xanthine–XO (Figs. 1, 2, 3).

First, we showed that midazolam dose-dependently

scavenged HO� generated by the Fenton reaction (Fig. 1).

This type of iron-dependent generation of HO� has been

implicated in the pathophysiologies of various disease

states; for example, DMPO–OH spin adducts can be

detected in the synovial fluid of patients with temporo-

mandibular disease [25], and in gingival fibroblasts from

patients with Down’s syndrome [26].

We also investigated the effect of midazolam on HO�

generated by the UV irradiation of H2O2, which is known to

be an Fe2?-independent reaction [14, 17]. Interestingly, high

concentrations of midazolam dose-dependently inhibited the

HO� generated via the UV irradiation of H2O2 (Fig. 2).

Propofol MCT/LCT was previously shown to scavenge HO�

in a dose-dependent manner in this system [9], and the

inhibitory effects of propofol MCT/LCT were observed at
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Fig. 2 Scavenging effects of midazolam on hydroxyl radicals (HO�)
generated from the ultraviolet (UV) irradiation of H2O2. a Electron

spin resonance (ESR) spin-trapping measurement of HO� generated

from the UV irradiation (365 nm, 40 mW) of H2O2 (20 mM) in

0.1 M phosphate-buffered saline (pH 7.2) with the spin trap 5,5-

dimethyl-1-pyrroline-N-oxide (50 mM) in the absence of midazolam

(control) and with midazolam pretreatment at 1.5, 4.6, 6.1, and

10.0 mM. Signals appearing on either side of the ESR spectrum

correspond to manganese oxide (MnO), used as a reference. b Dose–

response showing the scavenging effect of midazolam (closed column
1.5–10.0 mM) on HO� generated from the UV irradiation of H2O2.

The signal intensity of the second peak of the spectrum was

normalized to the signal intensity of the MnO standard. Data represent

mean ± SD of three identical experiments. Values annotated with

asterisks were significantly different (p \ 0.05) from the correspond-

ing control value
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concentrations lower than those required with midazolam in

the Fenton system ([7.7 mM; Fig. 1) and H2O2/UV system

([4.6 mM; Fig. 2). Midazolam at high concentrations

([1.5 mM) was also found to be a scavenger of O2
�– gener-

ated by xanthine–XO (Fig. 3), but it did not scavenge O2
�–

treated with the propofol MCT/LCT (original liquid

5.609 mM) [9].

These results indicate that midazolam and propofol MCT/

LCT differ in their ROS-scavenging properties and that this

difference may be clinically significant. In the case of pro-

pofol, antioxidant activity seems to be mediated by hindered

phenolic structures [27], as in the case of butylated

hydroxytoluene, butylated hydroxyanisole, and tocopherols

[28], whereas for midazolam, the structure responsible is

unclear. However, in a previous study on stobadine, a py-

ridoindole derivative that possesses potent antioxidant

activity, Kagan et al. [29] noted the possibility that intrinsic

nitrogen atoms might act as an antioxidant by donating

electrons to free radicals. This might also be the case with

midazolam.

The lowest concentration of midazolam used clinically

was about 0.3 lM; the minimum concentrations required

for inhibition ranged from 1.5 mM for O2
�– to 4.6–7.7 mM

for HO�. This finding contrasts with our previous ESR

study, which showed ROS-scavenging effects of propofol

MCT/LCT at concentrations below 112 lM [9]. These

results suggest that the antioxidant activity of propofol

MCT/LCT may be therapeutically beneficial in patients

with diseases associated with ROS. Propofol was also

shown to be more effective than midazolam at reducing

oxidative stress in a homogeneous solution containing

erythrocyte membranes [24]. Interestingly, O2
�– scavenging

was observed with high concentrations of midazolam in

our study (Fig. 3), but not with propofol MCT/LCT in a

previous study [9]. This finding may be clinically relevant

because O2
�– has been shown to play a role in ischemia–

reperfusion injury [30].

In conclusion, this in vitro ESR study showed that the

O2
�– and HO� can be scavenged by midazolam, but this

effect occurs only at high rather than clinically relevant

concentrations.
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